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C22  Turbulence governs Fusion plasma performance

Scaling law in tokamaks: plasma volume X 7 ~ cte
with 7z = energy confinement time ~ measure of thermal insulation.

¥

Two main possibilities to increase tokamak performances:

@ increase the size of the machine or/and @ increase ¢

m Turbulence governs g

- Generates loss of heat and particles
N, Confinement properties of the magnetic configuration

m Understanding, predicting and controlling turbulence for optimizing
experiments like ITER and future reactors is a subject of utmost importance.
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©® Gyrokinetic theory

® GYSELA code

» Semi-lagrangian approach
» MPI/OpenMP parallelisation
» Global flux driven simulation

® Exascale needs and associated challenges

» Increase of core number : scalability, fault tolerance
» Memory reduction and big data
» Continuous integration
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C22 Complex interplay between fields and particles éRfVVl

m Charged particle motion governed by electromagnetic fields

m Electromagnetic fields governed by charge p and current j densities

w self-consistent treatment required

particles fields
» Maxwell equations

A

Plasma response

Qan

m Plasma response: The most accurate = Kinetic
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CQa Kinetic model for plasma turbulence

m Fields » Maxwell’s equations
» Electrostatic (B = const): E = —V¢ (¢ electrostatic potential)
» “large scale” (> Apebye ~ 1074m)
w Quasi-neutrality equation:

p(x, 1) = Z nsqs =0 with ns = ffsdv
S

m Particles = Kinetic approach mandatory
» Fusion plasmas weakly collisional = fluid description not appropriate

w Boltzmann equation:
of ofs dv Jfs
at Vox Tat v o

6D function of s specie fs(x,Vv) (3D in space and 3D in velocity)

C(fs) + S
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Gyrokinetic theory: é'Rfm

w |arge phase space reduction 6D to 5D

Kinetic theory: = 6D distribution function of particles
(38D in space and 3D in velocity) Fs(r, 0, ¢, v, v., @)

m Fusion plasma turbulence is low frequency:
wrp ~ 10°57™ < wgi ~ 108s7!

m Phase space reduction: fast gyro-motion is averaged out

w Adiabatic invariant: magnetic moment u = mgv2/(2B)
w Velocity drifts of guiding centers

&) Large reduction memory/CPU time
® Complexity of the system

Gyrokinetic theory: m 5D distribution function of guiding-centers
Fs(r, 0,9, vg), 1t) where u parameter
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Cea  Gyrokinetic codes require state-of-the-art HPC ~ gfin

m Gyrokinetic codes require state-of-the-art HPC techniques and must run
efficiently on several thousands processors.

» non-linear 5D simulations
» multi-scale problem in space and time
» time: At ~ )/_1 ~107%s - tsimul ~ few 7 ~ 10s

> space: p; — machine size a -

]*:ZiDyears v px— ITER — 1 /51 2
e v Number grid points ~ (p.)2
sssssss o ‘ i
wo sz Upe Huge mesh for global simulations
ex: 10243 x 128y X 16u
T w several billiard of points
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GYSELA: 5D gyrokinetic global full-f code

m Self-organisation & Turbulence control éRfm

There are about ten 5D gyrokinetic codes for plasma fusion in the world.

m Various simplifications:

» Of codes: scale separation between equilibrium and perturbation.

» Flux-tube codes = the domain considered is a vicinity of a
magnetic field line.

» Fixed gradient boundary conditions.

» Collisionless.

m Various numerical schemes:

» Lagrangian (PIC), Eulerian or Semi-Lagrangian

= A new generation of global full-f gyrokinetic codes is being developed
with collisions and flux-driven boundary conditions.

GYSELA (GYrokinetic SEmi-LAgrangian code) is one of them
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Ce2a Global simulations required huge meshes éRfVVl

M
D

“Flux-tube” approach (local)
> Simulate only a vicinity of magnetic field line
® drastic reduction of mesh size
+ periodic boundary conditions
® small scale structures only

@ Global approach

» Simulate the whole domain ® Capture large scale events

® Extremely large 3D meshes
+ boundary conditions

Symmetry
<[> axis
hagrete — - Magnetic
field lines ¢ Suroes
7

R\

/ Poloidal
. Plasma current 9
Toroidal field cross section
Ro REE

GYSELA 5D
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== Flux-Driven boundary conditions
cea "

m | ong-time simulations

B Vanishing gradient boundary conditions at inner boundary
— temperature and flows evolve freely

Fixed boundaries Fixed flux
(thermal bath) (open system)
[Chang, PoP'08
|domura, NF'09
McMillan, PoP'09
Sarazin, '09]

N Profile relaxes

© Source terms aims at maintaining the equilibrium profiles, which would
otherwise relax towards marginal state

% Long-time simulations are available

= Extremely expensive in terms of CPU time.

Virginie GRANDGIRARD # ITER school +# 29 August 2014 10



@ Gyrokinetic theory

® GYSELA code

» Semi-lagrangian approach
» MPI/OpenMP parallelisation
» Global flux driven simulation

® Exascale needs and associated challenges

» Increase of core number : scalability, fault tolerance
» Memory reduction and big data
» Continuous integration
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CQa GYSELA code - main characteristics

0D to 3D Global

diagnostics
r.h.s for Poisson equation (r.6,¢) geometry
> [——— —*1 0(8,9)
‘ - adiabatic electrons —l
Integrals in

phase space Maxwell equations gyroaverage

!

J, F(re.0v,.1) J,. 0(r.6,9)
? Plasma response : ‘ :
gyroaverage derivatives

gyrokinetic Boltzmann 5D equations 4—‘

- Multi-ion-species :
GK eq. with arbitrary mass and charge

- Kinetic electrons in progress
Full-f
+ +
Semi-lagrangian Collision operator Source terms
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GYSELA - 5D Boltzmann equation

m Time evolution of the gyrocenter distribution function for s species

Fs(r,0,¢, v, 1) governed by 5D gyrokinetic Fokker-Planck equation with an
additional realistic heating source:

N (9,_: de . T 0 dVG” . = _
Ilsa_tS +V- (_BIISF5)+ BTG” (_tBHsFS = C(F) + S

dt d N

collision operator ~ heating source
dxg _
where = =V = vailb + va. ey
; ExB BxVB j»"?“ﬁ
with vg, = N + vqoR 52 B ""ﬁx Vol

E=V (JO . cp) with ¢(x) electrostatic potential and J, the gyroaverage operator

m Self-consistency ensured by a 3D quasi-neutrality equation: . "'_
e (6 - ) ZLZZIJO.(ﬁ_ﬁ )d3v+LZZV .(Evﬂ,)
Te,eq Ney - s s seq Ne, - sV 1 BQ.
N’

one for adiabatic electrons Y5 6nges SMpolarization Particles # guiding-centers
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~—=  Numerical methods for
cea

3D quasi-neutrality equation solving

m Solving the 3D quasi-neutrality equation is equivalent to finding
o(r, 0, ) such that:

Te ((P—((/’>fs __ZZVJ_ ( Sequ.(P ZZ f'JO seq dsv
e.eq

= Numerical methods:

> Fourier projection in periodic directions 6 and ¢
> Finite differences in radial direction
m Difficulties:

® R.H.S = integral over the velocity space
= Parallel communications ++

® <¢>FS = ffquxded(p/ffjxdﬁd(p flux surface average of ¢

= Pb in Fourier due to coupling between 0 and ¢
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Time-splitting for Boltzmann equation

= A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

. 5’_’_:s dxg d (dvg .. = E
8.5 +V (% B"SF) avG”( ar Disfs| =C(F)+S
m Let us define three advection operators (with Xg = (r,0))
. aF' , dXg 5
B, 52 +V: (B, 52F) =0 (%)
. OF 3 ., do .
Bis 3¢ * 5 (Bus ai F) =0 ()
N a,_: d dVGH .
BIIS ot + _avG“ (BHS dt FS =0 : (VG”)
= And the collision operator (C) on a At : 9;Fs = C(Fs)
= And the source operator (S)ona At : 9;F; =S
m Then, a Boltzmann solving sequence (8) is performed:

s ¢

2’2

@ N

2

(22l
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Ce2 Time-splitting for Boltzmann equation

= A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

. 9Fs dXg d (dvg .. = E
B G + V(G 8P + avG”( ar DisFs] = CFe) 45
m Let us define three advection operators (with Xg = (r,0))
. aF' , dXg iy
Biear (B"S dt FS) =0 (%)
. OF, 3 . dop . m Semi-Lagrangian
Bis—>5r ot a(p (Bus dt F) =0 () scheme
. af_: 0 dVGH P
Blls ot + m (B”s dt FS =0 : (VG”)
= And the collision operator (C) on a At : 9;Fs = C(Fs) s Crank-Nicolson
= And the source operator (S)ona At : 9;F; =S m Crank-Nicolson
m Then, a Boltzmann solving sequence (8) is performed:
o _ (S C\(Va ¢ s ¢ Va\(C S
S (2’2)(2'2’X‘3’2 2 J\27 2
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Example of Backward Semi-Lagrangian (BSL)
approach for 1D advection operator

é'Rfm

We consider the advection equation

of
a—t+a(x,t)~fo:0 (1)

The scheme: (mix between PIC and Eulerian approach)
m Fixed grid on phase-space (Eulerian character)
m Method of characteristics : ODE — origin of characteristics (PIC character)
m Distribution function f is conserved along the characteristics

ie. (%) = (X (ty; Xi, ty1)) (2)

Interpolate on the origin using known values of previous step at mesh points
(initial distribution f© known).

/w\

t n+1 t n
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Backward Semi-Lagrangian parallelisation (1/2) éRfm

© Fixed grid in time = perfect load balancing
® Complex parallelization due to cubic spline interpolation

> Loss of locality (value of f on one grid point requires f over the whole grid)

= Not possible to use a simple domain decomposition

Two approaches are used in the GYSELA code

@ Work on the decomposed domain: A new numerical tool has been developed

w Hermite Spline interpolation on patches  [Latu-Crouseilles 2007]

5 » Local splines on each subdomains with
local Hermite boundary conditions
splines » Derivatives defined to match as closely as
possible those of global splines

local |
splines | 4

boundary adapted conditions for ' reconstruction,
including patch boundaries

® Some gradients can appear at the interfaces in the non-linear phase
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Backward Semi-Lagrangian parallelisation (2/2) éRfm

® Work on the global domain:

m Data transposition

> Let us consider the transposition operation Tr and its inverse 7.':

Tr
— = —

Fs(foiocks Oblock, @ = *, V| = *, 1 = piq) = Fs(r =+,0 = * @vlock, Viblock, 1t = Hid)
.

H 3
Each processor has all information on ¢ Each processor has all information on
and v directions so: (r, ©) cross-section
— 1D advection operator (§) is possible < 2D advection operator Xg

— as 1D advection operator (vg)

® Expensive in term of communication between processors
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@ Gyrokinetic theory

® GYSELA code

» Semi-lagrangian approach
» MPI/OpenMP parallelisation
» Global flux driven simulation

® Exascale needs and associated challenges

» Increase of core number : scalability, fault tolerance
» Memory reduction and big data
» Continuous integration
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Hybrid MPI/OpenMP parallelisation

® GYSELA main characteristics:

SMP node SMP node

® Complete knowledge at the institute. R (@) e
» Written in Fortran90 + some routines in C (~ 50000 lines). o B
» Hybrid OpenMP/MPI parallelisation to use benefit of SMP cluster sovrz | 7T Socka2

For instance: e 1
> MPI between nodes | =

> OpenMP inside quad-core CPU | l LLIL !

Node interconnect |

SMP cluster scheme

B Message Passing Interface (MPI)

> MPIlis a library specification for message-passing, ‘Pmesw Pmessz‘
proposed as a standard by a broadly community.

® Open Multi Processing (OpenMP)

> OpenMP is a specification for a set of compiler Memory
directives, library routines, and environment variables

that can be used to specify shared memory @
parallelism in Fortran and C/C++ programs.
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S algorithm

m Let us consider the transposition operation Tr and its inverse T;‘:
Tr

_ =5 _

Fs(foiocks Oblock, @ = *, V| = *, 4t = piq) = Fs(r =+,0 =+ @vlock, Viblock, 1t = Hid)
.
-

= Input: Physics parameters + F2(Fiock, Oblock, @ = *, V| = %, i = thia)
m Fork =0to N:
> Computation of r.h.s of quasi-neutrality: }_  Zs fJo - Ffdv du
> Solve 3D QN equation: ¢¥ — ¢<*'
» For each species s and each value of u = pjq:
> Gyroaverage computation: Jo - ¢p**"1
> Solve 5D Boltzmann equation: F¥ — Fk*'

A e 2 )

» Phase space reduction for 3D to 0D diagnostics at time <+
End for

= Output: Distribution function (FY) for restart + 0D to 3D diag. at several times
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Parallel performance measurements

B Speed up = Tseriat/ T paratier(N)
> Tserial = 100 sec
> Tparallel(z) =80 secs
» 25% speed up
m Efficiency = Toeriat/(NXT paratte1 (N))
» 100/(2x80) =
» 62% efficiency

B Weak scaling The problem size (workload) assigned to each processing element
stays constant and additional elements are used to solve a larger total problem

| Strong scaling The problem size stays fixed but the number of processing
elements are increased

» In general, it is harder to achieve good strong-scaling at larger process counts
since the communication overhead for many/most algorithms increases in
proportion to the number of processes used.
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Scalability and bottlenecks

Strong scaling: N, =512, Ny =512, N, =128, N, =128

M, = 32, main data=1TiB M, = 16, main data=512 GiB
Execution time, one run (Curie) Execution time, one run (Turing)

1e+05 T2 Vissoy oiver 1le+05 A-A Viasov solver
. ©-o Fieldsol
- Field solver . o Daivatives computation
lev04 +-+ Derivatives computation 1e+04 e S
=-= Diagnostics %% Diffusion
1e+03 = _Total for onerun Diagnostics
T 1e+03 == _Total for one run
100
.......... . 100
10 Crteen
SO —— — Ly 10
1
0.1 1
2048 4096 8192 16384 32768 65536 8192 16384 32768 65536
Nb. of processors Nb. of cores

= Time dominated by Vlasov solver

w Scaling bottleneck: Poisson solver
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Scalability and bottlenecks

Strong scaling: N, =512, Ny =512, N, =128, N, =128

M, = 32, main data=1TiB M, = 16, main data=512 GiB
. Relative efficiency, one run (Curie) Relative efficiency, one run (Turing)
120
100 forsss
B o e i
60 Tlve,

[A-4 Viesov sover
. oo Fied solver
e 40 | | ¢ Derivatives computation |- -

40 |['a-a Vlasov solver - . MM R
soRddse | 1 e
+-o Derivatives computation | “#.. ! %% Diffuson e e

20 || , . Diagnostics 20| | Dagnostes
== Total for onerun e o 0 i

0

2048 4096 8192 16384 32768 65536 8192 16384 32768 65536

Nb. of processors Nb. of cores

= Time dominated by Vlasov solver
w Scaling bottleneck: Poisson solver

~ 60% efficiency at 64 k cores on both machines (Curie and Turing)
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@ Gyrokinetic theory

® GYSELA code

» Semi-lagrangian approach
» MPI/OpenMP parallelisation
» Global flux driven simulation

® Exascale needs and associated challenges

» Increase of core number : scalability, fault tolerance
» Memory reduction and big data
» Continuous integration
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GYSELA competitive in terms of physics (1/2
p physics (1/2)

}Rﬁ’}’l

w Biggest global simulation ever run

Grand Challenge CINES 2010: Biggest global simulation ever run

= A simulation close to ITER-size scenario (p. = 1/512) performed on 1/4
torus with additional heating power of 60 MW during 1 ms

v/ A 5D mesh of 272 10° points
(r, 0,0, vy, 1) = (1024 x 1024 x 128 x 128 x 16)

v > 6.1 million hours monoproc.
» ~ 31 days on 8192 processors

|

v 6.5 TBytes of data to analyse

» 1.5 TBytes for 2D and 3D savings
» 5 TBytes for restart files

ion temperature fluctuations
in the turbulent saturated phase

[J. Abiteboul EPS2010, Y. Sarazin IAEA2010]
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‘ GYSELA competitive in terms of physics (2/2

w Flux-driven simulations

m Generation & transport of toroidal rotation /
Role of turbulence & boundary conditions
> [J. Abiteboul et al., PPCF 2013]

m Transport barrier relaxations with E, shear
> [A. Strugarek et al., PPCF 2013]

> [A. Strugarek et al., PRL 2013]
> [Y. Sarazin, V. Grandgirard and A. Strugarek,

La Recherche, nov. 2012]
m Interaction energetic particles & turbulence
via EGAMs
» [D. Zarzoso et al., PoP 2012, PRL 2013]

m Comparison with experiments
> [invited G. Dif-Pradalier , TTF 2013]

m Caracterisation of turbulent transport
> [ C. Norscini, poster, Vlasovia 2013]
> [T. Cartier-Michaud, poster, Vlasovia 2013]

Virginie GRANDGIRARD # ITER school +#
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GYSELA competitive in terms of physics (2/2
p physics (2/2)

w Flux-driven simulations

Snapshots of non-axisymmetric

m Generation & transport of toroidal rotation / electric potential fluctuations
Role of turbulence & boundary conditions i

® N =9instead N = 18 for ripple effects

m Transport barrier relaxations with E, shear
® Reduced p. = pi/a: 1/150 instead of 1/500

m Interaction energetic particles & turbulence
via EGAMs

® Not possible to treat very energetic particles

. . . _ - [GYS]
m Comparison with experiments £ T — o]
® Sseveral energy confinement times not accessible E
>
m Caracterisation of turbulent transport = _
Heat source
® Not enough 3D data saved for good statistics “ Nomalisedradivs o
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ITER-type simulation for an energy confinement

time unreachable ™ Exascale Needs éRfm

w GYSELA is already using currently Petascale machine (> 50 million hours/year)

® Compromise machine size & simul. up to energy confinement time must be found
B GYSELA simulation close to ITER-like parameters : 272 billions of points
B Longest time simulation: 2.108/Q. ~ 1 energy confinement time

Number of Number of
Points Time /@, Number of days of
*=p/a) Cores simulation
Gd Challenge 272 billions
CINES 2010  (p*=1/512) 147 840 8192 31
Gd (33;_1)3:);05) 678 510 16 384 15
Challenge p=
CURIE 2012
=> Adding of tritium 32768 6
Comparison
with 87 billions

experiment  (p*=1/300) 2 Y S 9

(in progress)

w GYSELA will require Exascale machine for realistic kinetic electrons
B With electrons: pions/pelec = 60 ™ mesh size x60% and time step/60 !!!
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@ Gyrokinetic theory

® GYSELA code

» Semi-lagrangian approach
» MPI/OpenMP parallelisation
» Global flux driven simulation

® Exascale needs and associated challenges

» Increase of core number : scalability, fault tolerance
» Memory reduction and big data
» Continuous integration
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ce2 Petascale era ...

— On the road towards Exascale

m At the moment, Petascale machines (in operation since 2008):
< more than 33 PetaFlops (1 PFlops= 10 floating point operations per

’ L =
ICL: . www.top5
INNOVATIVE Lawrence Borkeloy
COMPUTNGLASORATORY [EETIEY otional Laboratory —pyoptonn maset ricomotoomurent
NAME SPECS SITE COUNTRY CORES Rl

Tianhe-2 (Milkyway-2)  NUDT, Intel lvy Bridge (12C, 2.2 GHz) & Xeon Phi (57C, 1.1 GHz), Custom interconnect ~ NSCC Guangzhou  China 3,120,000 339

Titan Cray XK7, Operon 6274 (16C 2.2 GHz) + Nvidia Kepler GPU, Custom interconnect DOE/SC/ORNL USA 560,640 176
Sequoia 1BM BlueGene/Q, Power BAC (16C 1.60 GHz), Custom interconnect DOE/NNSA/LLNL USA 1,572,864 172
K computer Fujitsu SPARC64 VIlIfx (8C, 2.0GHz), Custom interconnect RIKEN AICS Japan 705,024 10.5
Mira IBM BlueGene/Q, Power BAC (16C, 1.60 GHz), Custom interconnect DOE/SC/ANL USA 786,432 8.59

= Nobody knows what will exactly be the future “Exascale machine” but:
— Exascale implementations projected by 2018
— Several millions of cores with small memory per core (< 1 GBytes)
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Some exascale bottlenecks for GYSELA and é'Rfm

others ... (1/2)

m Applications will need to be scalable on millions of cores

m Exascale machines could be close to BlueGene Architecture or ... ?

— Adapting the code for BlueGene architecture
[J. Bigot, F. Rozar et al., ESAIM proceedings 2013]

— Adapting the code to the new Intel-Xeon Phi technology

w Tests on IFERC machine with a prototype application
[G. Latu, M. Haefele, CEMRACS 2014 project]

= Increase of number of cores = Probability of crashes increases
w Post-Doc ANR-Nufuse G8@Exascale: O. Thomine (oct 2011-oct 2013)
— Non-blocking writing of restart files [O. Thomine et al., ESAIM proceedings 2013]
— Fault tolerance improvement [J. Bigot, CEMRACS 2014 project]
w Goupling with FTI library (developed by F. Capello)
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Some exascale bottlenecks for GYSELA and é'Rfm

others ... (2/2)

= Big data ~ Several hundreds TBytes: Issues of transfer, storage, visualisation

— HLST support (IPP Garching) for data compression and parallel writting
[S. Espinoza, HLST report 2013]

— How to improve data transfer ? = Actually more than one week
< Where and how to archive ?

— CINES team (long time storage)

— Visualisation with SDvision (IRFU/DSM)

= Memory reduction per nodes:
m PhD Maison De la Simulation / IRFM: F. Rozar (dec 2012-dec 2015)
— Development of dedicated tools for memory scalability. (MTM C/Fortran library)
— First gain up to 50% of memory on a large simulation run.
[F. Rozar et al., submitted to PPAM2013]
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GYSELA: On the road towards Exascale
m Weak scaling: 91% on 458 752 cores

éRfm

m Big efforts of parallelisation since 2009
m Maximum of Gd Challenge opportunities taken to improve GYSELA efficiency

Relative efficiency

Number of
cores
Weak scaling Strong scaling x56
Gd Challenge o ®
CINES (march 2010) e Y il
CHlCimlbiye 91 % 61 % 65 536

CURIE (march 2012)

Porting on Blue Gene Architecture => Communication schemes rewritten

Gd Challenge @ ®
TURING (anuary 2013) ok L5 el
Access to totality of 91 % 458 752

JUQUEEN (may 2013)

— Weak scaling: Relative efficiency of 91% on 458 752 cores on the totality of the
biggest european machine (Juqueen - 1.8 Mthreads)
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WEAK scaling: (on JUQUEEN - Juelich)
Relative efficiency of 91% on 458 752 cores

é'Rfm

m Parallel communication schemes completely rewritten

m Tests performed on the totality of JUQUEEN/Blue Gene machine (Juelich)

Execution time, one Gysela (Weak Scaling - Juqueen)  Relative efficiency, one run (Wesk scaling - Juqueen)

120
A-4 Vl]asov solver
180 *-+ Field solver i
+-¢ Derivatives computation 100
150 =-= Diagnostics
*xx Total for onerun 80
—
120 f "
60
90
60 AA - Aiaan D R EET T T Aceinans A 40 |[a-a V]asov solver
-+ Field solver
20 +-¢ Derivatives computation
B0 [ e g s =-= Diagnostics
WESBHE FTHEEETETE SEHEREREE R
o iape i e »x Total for onerun
0 0

64 128 192 256 320 384 448
Nb. of Kcores (x 1000)

64 128 192 256 320 384 448
Nb. of Kcores (x 1000)

m  Weak scaling: Relative efficiency of 91% on 458 752 cores .

> PRACE preparatory access (April 2012 - Nov 2012): 250 000 hours

> ANR G8-Exascale via P. Gibbon.
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Cea Improvement of memory consumption

B GYSELA is global =™ Huge meshes m Constrained by memory per node

m Development of the MTM library in progress (Modelization & Tracing Memory
consumption)
> Identification of memory peak
> Prediction of memory required before submit = Avoid memory exhaust

@5@*"*5 - ,uA:W) e ‘(Ww« - - L e ; N"W_; P,
Before optimisation After optimisation

B Static to dynamic memory alloc. + improvement of algorithms

m Gain of factor 50% on 32k cores [F. Rozar et al., accepted to PPAM2013]
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B Problem of memory and time scalability for GYSELA 3D diagnostics
m Development of the LCHD library performed by HLST-IPP Garching

> 6 months project - S. Espinoza & M. Haefele

> Fast multi-file multi-variable exportation
> Lossless and lossy 3D data compression

[S. Espinoza, HLST Report 2013]

mfconvert.py

- Compression/ decompressior
+File type conversion

GYSELA prototype (example3D.F90)
@
_E " W+ Multifile exportation mfdiag.c .4‘..’3
z « Inssitulossy 50% "
el IlllllllDiii?iii IS compression (double to Multifile MPI exportation
5
H Post-processing step In Situ
@ HDFSmasIera% ["; I:jE\nary/HDFS %[b Binary/HDF5
(just atiributes) - (double) (simple)
mfgathApy
v + Compression (post- silcomp.c
processing) o
° Pogh - Multifle gathering (RIS ET
2 1| Postprocessing compression ‘Nammpms.ﬂ (insi) 7 LOSSLESS: Repeated pttem i)
E HDFSmaslarMsg i(slmp\e/ HOFS file | HDFS file o Wavelets (double prec)
(just atiributes) duub\s) (W“b‘s): (simple) 1. High freq (noise) removal
v Archiving v Archiving 2. Threshold
X Postprocessin, ¥ Postprocessing o Precision

% /O bandwidth x26 with parallel efficiency of 95% from 256 to 1280 cores

% Lossless: 8% compression;
L ossy: from 50% to 70% achieved without altering physics
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Ce2a Continuous integration for non-regression tests éRfVVl

= Based on the Inria continuous integration platform

> Jenkins + CloudStack
m Each time compilation in many modes (43) = Error + warning analysis
= Non-regressing physical tests

Tableau de bord lenkins] - Mozilla Firefox
fichier Edion Affichage Historique M
| & Tableau de bord [jenkins] [+
& (£ @ hitpsiciinriafrigysela v@ v Q) @
Tous
s
[* E& 4i3h-2135 4j3h-213% Mm [}
[*] sian-zs so 2ma7s [%9)
Qo san-sm so sis )
(%] aATn-sm so Thiom [3)
-1 @ auTn-ss so 27m 9]
0 et
aysein.t Qo ATham s Tmas %)
1] Auropos - i
preey oA saness imas Q)
1] Auropos -
) K ¥ srhm smrs D)
1] Auropos -
e —— Qo aTnms s s ©
Qo A so 6o %)
s W & M

o

@
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Cea Conclusion

Iy

Each GYSELA simulation = a numerical experiments
— Several weeks on several thousands of core

(ex: Grand Challenge Curie 2012: 15 days on 16384 cores)
— Several TBytes of data to store and to analyse

Exascale HPC are required for realistic kinetic simulations with both ions and
electrons
— Promising results: Weak scaling - relative efficiency of 91% on 458 752 cores

Lots of bottlenecks need to be overcome for all gyrokinetic codes to be ready to

run on exascale machines.

High level collaboration with computer scientists is mandatory.
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Collaborations:

= ANR GYPSI (2010-2014)
< Strasbourg, Nancy, Marsg

ANR Nufuse G8@exascale (
— France, Germany, Japan,

ADT INRIA Selalib (2011-20
— Strasbourg, Bordeaux

Action C2S@Exa - IPL INRIA
(march 2013-201
— Nice, Bordeaux

New project following AEN |
(evaluation in progress)
< Strasbourg, Lyon, Nice

Collaborations with IPP Garc|
(Germany) since 2012

Collaborations with “Maison ¢
Simulation”- Saclay (Paris) si
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